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Abstract 

Keeping track of continually changing information has 
been investigated since Yntema & Mueser's (1960) semi­
nal work. The fact that types of mappings between objects 
and values and of memory load affect performance are 
well established, but have never been integrated in a the­
ory. As a step toward such a theory, this paper describes a 
mathematical model that combines a task analysis with a 
set of assumptions derived from the ACT-R theory about 
the dynamics of memory traces. The model's remarkable 
reproduction of data published by Venturino (1997) dem­
onstrates that standard memory concepts are sufficient to 
explain the results related to this paradigm. The model 
yields a clear implication about what causes interference 
and helps specify open questions. 

In many areas of supervisory control, operators have to 
keep track of the changing values of a number of vari­
ables. Knowing the current state of a dynamic system is 
an important component of situational awareness (End­
sley, 1995). For example, a pilot flying a modern auto-
mated aircraft needs to know the current altitude, speed, 
and course of the aircraft, the current settings and modes 
of the flight management system, just to mention a few of 
the variables. 

In the experimental paradigm for keeping track of con­
tinually changing information, introduced by Yntema 
and Mueser (1960), object-value pairs are presented suc­
cessively, interrupted by queries about the value associ­
ated with a certain object. The most common variables 
manipulated are the number of objects and the number of 
attributes from which the values are selected. 

In Yntema and Mueser's (1960) experiment, subjects 
either had to keep track of changing values of many at-
tributes for one object or changing values of the same 
attribute for many objects. Memory performance was 
worse in the latter condition. This was attributed to a 
high degree of interference when only one attribute is 
used. 

Venturino (1997) argued that Yntema and Mueser 
(1960) confounded attribute similarity and information 
organization. Figure 1 illustrates how the former factor is 
defined by the number of attributes, the latter defined by 
the number of objects. In order to investigate the relative 
influence of the two factors on memory performance, 

Venturino (1997) completely crossed these two factors, 
such that all four possible combinations between high 
and low attribute similarity and high and low informa­
tion organization were included. A third factor was 
memory load. Attribute similarity had a large effect on 
memory performance, which confirmed Yntema and 
Mueser's (1960) findings. Information organization also 
had a significant effect, but this effect was much weaker. 
As expected, performance declined with memory load. 
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Figure 1: Illustration of the relations between objects, 
attributes, and values in the paradigm of continually 

changing information 

This same paradigm was used by Hess, Detweiler and 
Ellis (1999) to prove the superiority of spatially rich dis­
plays over displays that show values of different attrib­
utes in the same location. Although their research goal 
was different from Yntema and Mueser's, the basic find­
ings of the paradigm were confirmed in these experi­
ments. 

To summarize, the effects of attribute similarity and of 
memory load are well established. Although the main 
effects can be explained through the interference that 
occurs between values of the same attribute, the interac­
tions between attribute similarity and memory load are 
understood less well. There is no integrative theory that 
accounts for all the effects. Venturino (1997) interpreted 
his results as suggesting a distinction between memory 
capacity for static information and memory capacity for 
dynamic information, because memory performance in 



the same-attribute condition was worse than what would 
be expected in a comparable static memory task. 

The goal of this work is to explore if the results about 
keeping track of dynamically changing information can 
be explained more parsimoniously with standard assump­
tions about memory. As a means for this exploration, I 
developed a mathematical model of the experiment by 
Venturino (1997). The model combines a task analysis 
with a set of assumptions about the dynamics of memory 
traces that are derived from the ACT-R theory (Anderson 
& Lebiere, 1998). The model may also contribute to an 
integrated understanding of all the effects related to the 
paradigm. 

In the following sections, I first describe Venturino's 
experiment in more detail before I present and discuss 
the model. 

Venturino's Experiment 
The material used in the experiment consisted of the 

names of six different fire engines and six different at-
tributes with six values each. Continually changing at-
tribute values were assigned to the fire engines. The task 
was to memorize these values. After a series of five to 
seven updates, the subject was asked for the current at-
tribute value of a certain fire engine. For example, in 
keeping track of the current values of two fire engines, a 
subject might have to keep track of the number of fire-
fighters for a pumper engine and the location of a tanker 
engine. 

This continual updating is shown with a detailed ex-
ample in Table 1. Time is represented in discrete steps, 
where 1 denotes the time of the most recent update, 2 the 
time step before, and so on. I will refer to these steps as 
lag, indexed by the variable i. 

Table 1: Illustration of the continual updating of values 
(asterisks indicate an updating event) 

1 

The example shows tanker being updated with the 
value four at lag 4, ladder being assigned the value seven 
at lag 3, tanker updated with the value five at lag 2, and 
pumper being assigned the value four at lag 1. Every fire 
engine keeps its value until it is updated. These update 
events are indicated by asterisks in Table 1. The three 
current values "now" are five firefighters for tanker, 
seven firefighters for ladder, and four firefighters for 
pumper. Note that the values differ in "age". 

Three independent variables were manipulated in the 
experiment: number of objects (one vs. many fire en­

gines), attribute similarity (same vs. different attribute), 
and memory load (two, four or six values to keep track 
of). The first two factors were varied between subjects; 
the last factor was varied within subjects. In the many-
object/different-attributes condition, unique mappings 
between objects and attributes were used, such that each 
of the two, four, or six engines had a value of a different 
attribute. In the many-objects/same-attribute condition, 
two, four, or six fire engines had multiple values of the 
same attribute. In the one-object/different-attributes con­
dition, one engine had values of two, four, or six attrib­
utes. In the one-object/same-attribute condition, one fire 
engine had a value of one attribute. In order to manipu­
late memory load in this condition, subjects had to 
memorize the history of the last two, four, or six values. 
Despite the different mappings, the same number of val­
ues had to be remembered in each memory load condi­
tion. 

Each block began with an initialization of values, fol­
lowed by 75 to 105 updates, presented at a rate of one 
update each seven seconds. The updates were randomly 
interrupted by 15 queries. There were100 subjects total, 
randomly assigned to one of the four conditions. In a first 
session, subjects studied the experimental material and, 
after a few practice trials, worked on the block with 
memory load 2. Two days later, the blocks with memory 
load 4 and 6 were administered. 

Performance was measured as the proportion of correct 
answers. The outlined markers of Figure 3 illustrate the 
main results. All three independent variables had signifi­
cant main effects on performance, but they were differ­
ently strong. Attribute similarity accounted for 15% of 
the variance, information organization (number of ob­
jects) for only 1%. The main effects were qualified by a 
significant three-way interaction of all factors. Separate 
analyses revealed significant interactions between attrib­
ute similarity and memory load in both object conditions: 
Memory load affects performance much more when the 
same attribute is used than when different attributes are 
used. 

In the same-attribute condition, there was a significant 
interaction between memory load and number of objects: 
In the many-object condition performance decreased 
more sharply as memory load increased than in the one-
object condition. In the different-attribute condition, the 
number of objects had no significant effect on perform­
ance. 

An error analysis revealed that 44% of the errors were 
previous state errors, i.e. a subject responded with the 
previous value of an attribute rather than its current 
value. Interestingly, subjects responded significantly 
faster (M = 4.58 s) when making a previous state error 
than when making any other type of error (M = 5.30 s). 

Model 
In this section, a model will be described that is able to 

reproduce the results of Venturino's experiment. The 
predictions of the model are not derived from simulation, 
but from a mathematical combination of the probabilistic 

lag 
time 

stimuli current value of 
fire 
engine 

n fire-
fighters tanker ladder pumper 

… … … … … … 
4 tanker 4 *4 … … 
3 ladder 7 4 *7 … 
2 tanker 5 *5 7 … 

pumper 4 5 7 *4 
now 



Table 2: Task analysis of the keeping track task 

lag i 
fire-

engine 
value vi vi current 

now? 
p (v4 current after 

lag i) 
p (v3 current after 

lag i) 
p (vi current now) 

= qi 

4 tanker 4 no 1 … 0.753 

3 ladder 7 yes 0.75 1 0.752 

2 tanker 5 yes 0.752 0.75 0.75 
1 pumper 4 yes 0.753 0.752 1 

now 

structure of the material and basic assumptions about the 
dynamics of memory elements. The psychological as­
sumptions originate from the ACT-R theory (Anderson & 
Lebiere, 1998). 

Suppose that each update event is stored as a unique 
memory trace. The probability that this trace contributes 
to a correct answer equals the probability that the trace 
represents a current value times the probability that it is 
retrieved from memory. The first factor is given by the 
task analysis described below, the second factor is de-
rived from a cognitive model. Summing up the probabili­
ties of contributing to a correct answer for all memory 
traces gives an estimate of the number of correct answers 
for all possible probes. 

Task Analysis 
The first component of the model is an analysis of the 

probabilistic structure of the material used in the experi­
ment. This task analysis allows us to determine the prob­
ability that a value is current as a function of the update 
time and the memory load condition. 

Table 2 is built on the example given in Table 1 and 
contains information that is relevant to understanding the 
task analysis. Time is again indicated by lag. The values 
that were presented at each time step are referred to as vi. 
Column 4 contains the "currency" of the respective val­
ues vi at present time (now), i.e. immediately after lag 1. 
The values v1, v2, and v3 are still current, but v4 is not, 
because it was overwritten with v2. Column 5 shows the 
probability of v4 being current at the end of each time 
step. At the end of lag 4, v4 is current (probability equals 
1.0), because it has just been updated. At lag 3, one of the 
four vehicles is randomly chosen for an update. Thus, the 
probability of v4 being updated at lag 3 is 0.25. Put an-
other way, the probability of v4 being current at the end 
of lag 3 is 1-0.25 = 0.75. The same considerations hold 
for the following steps. 

Because the updates are independent events, the prob­
abilities for each time step must be multiplied to obtain 
the overall probability that a value is still current. Thus, 
the probability of v4 being current after lag 1 ("now") is 
0.753. Column 6 exemplifies that for the update of "lad­
der" at lag 3. The last column of Table 2 contains the 
resulting probabilities of being still current for v1 through 
v4. Equation 1 is the generalized form of the probability 
qi of value i still being current. 

i-1 qi = ps (1) 

In Equation 1, ps is the probability of not being up-
dated in the following step. This variable depends on the 
memory load nc (i.e. number of current values given by 
the number of vehicles and/or attributes), according to 
Equation 2. 

ps = 1 - 1/nc (2) 

Applying Equations 1 and 2 to Venturino's experimen­
tal materials results in the probabilities depicted in Fig­
ure 2. Each memory load condition results in one curve. 
Memory load condition 6 involves six current values, 
distinguished by the type of vehicle, the attribute, or a
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unique mapping between vehicle and attribute. Similarly, 
memory load conditions 4 and 2 involve four and two 
values, respectively. It is obvious that the probabilities of 
being current diminish much faster the fewer current 
values there are, because the probability for each value 
being updated is higher when there are fewer dimensions 
(attributes and/or objects). 

The task analysis also reveals that the probabilistic 
structure of the one-object/same-attribute condition devi­
ates considerably from this scheme. Because in this con­
dition, the last two, four, or six values of the same attrib­
ute have to be remembered for only one object, the prob­
abilities of these values being current are one, the prob­
abilities of all other values are zero. This different struc­
ture was entered at the appropriate places in order to cal­
culate the model's prediction. 
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Figure 2: Probabilities qi that a value that was updated in a 
certain time step is still current. 



Cognitive Model 
The second component of the model is a set of assump­

tions about the dynamics of the memory representations 
that are formed from the update events. The first assump­
tion is that for each update event a new memory element 
is created which represents the information given in the 
update. The second assumption is that each element is 
rehearsed a number of times, thus being strengthened. 
The remaining assumptions are part of the ACT-R the­
ory. 

According to the rational analysis basis of ACT-R, the 
activation of a declarative memory element reflects the 
probability that the element is needed in the current con-
text and determines its retrieval. The two additive com­
ponents of activation are baselevel activation and net 
activation. The former reflects the baserate probability, 
the latter the conditional probability given the current 
context. In this application, current context means the 
cues that are active and enhance retrieval of the correct 
memory element. Since this model makes no specific 
assumptions about cues, we can focus on baselevel activa­
tion. 

The baselevel activation of an element is defined as the 
log odds that the element is needed. The odds are calcu­
lated with Equation 3, where n is the number of times the 
element has been needed, and L is the lifetime of the 
element1. Lifetime is the time that has passed since the 
creation of the element. The more frequently a memory 
element has been needed in its lifetime, the higher is its 
baselevel activation. If an element is not needed for some 
time, its baselevel activation decays. These changes of 
baselevels depending on use and time are referred to as 
baselevel learning. 

2n
odds = 

L 
(3) 

As mentioned earlier, I assume that a new memory 
element is created for each updating event and that this 
element is rehearsed a number of times after its creation. 
Each single rehearsal involves a retrieval of the element, 
which increases the respective n. The number of rehears­
als is a free parameter of the model. The lifetime L is 
determined by the lag at which the element was created 
and the duration of each step (which was seven seconds 
in Venturino's experiment). 

Odds can be transformed into probabilities using the 
definition odds = p/(1-p). This gives us Equation 3a. 

p = odds/(odds+1) (3a) 

1 Equation 3 is an approximation of the original ACT-R 
equation. The approximation includes the default value 0.5 of 
the "baselevel-learning" parameter. The similarity between the 
time functions of Equations 1 and 3 illustrates the ACT-R no­
tion that memory processes reflect the probabilistic structure of 
the environment. 

With this equation, the probability of retrieval p can be 
predicted for each memory element that was created to 
represent an update event. 

This probability is assumed to be degraded in the 
same-attribute conditions where interference is expected, 
depending on the number of competing memory ele­
ments. Assuming that only the elements that represent 
current values of the same attribute are competing, the 
respective numbers nc are two, four, and six. Note that in 
the different-attribute conditions there is only one current 
value of each attribute, so no interference is expected 
there. 

I assume further that the interference effect is "buff­
ered" by a constant c, which is the second free parameter 
of the model. Equation 4 shows the degrading function. 
To ensure that the degraded probability value ranges be-
tween 0 and 1, c may vary between 0 and 0.5. 

� p | condition = different - attributes � 
p' = � � (4) 

� p � (c + 1/ nc ) | condition = same - attribute� 

It is important to realize that the cognitive component 
of the model makes no assumptions about the influence 
of the information organization factor. This can be justi­
fied by the result that this factor accounted for only 1% of 
the variance in the experiment. Nevertheless, the predic­
tions for the one-object conditions are slightly different 
from those for the many-object conditions, because of the 
different probability structure of the one-object/same-
attribute condition. 

Equation 5 describes how the prediction of the model 
is obtained by summing up for each time step the prob­
ability that its value will lead to a correct answer and 
dividing the sum by the number of current values (i.e. 
memory load). qi is the probability that the value of step i 
is still current, pi' is the probability that the memory ele­
ment representing that value is retrieved, and nc is the 
number of current values. 

s 

�qi � pi ' 
P = i=1 (5) 

nc 

Summing up the probabilities of all memory traces 
gives a generalized estimate of their potential to answer 
all possible probes. The prediction of the model should be 
the expected proportion of correct answers. Therefore, 
the sum must be divided by the number of current values, 
because, depending on memory load, all traces contain 
two, four, or six traces that represent current values. 

The two free parameters of the model, number of re­
hearsals n (Equation 3) and c (Equation 4), were esti­
mated to optimize the fit to the data. The resulting values 
were n = 12 rehearsals and c = 0.5. With these values, 
the prediction of the model matched the data with an R2 

of 0.89 and a root-mean-square deviation (RMS) of 0.07. 



Although an R2 of 0.89 might not seem very high, one 
has to take into account that twelve degrees of freedom 
were predicted by adjusting only two parameters. For the 
many-objects conditions alone, the R2 is 0.97 and the 
RMS is 0.04. 

Note that the task analysis contributes to the prediction 
only in combination with the memory assumptions. Since 
Sqi equals nc (cf. Equations 1 and 2), a constant probabil­
ity of retrieval p' would simplify the numerator of Equa­
tion 5 to nc · p' , and Equation 5 would yield the constant 
p'. The variation of probabilities of being current, qi , 
would be completely neutralized by a constant probability 
of retrieval, p', and no differences would be predicted. 

If only the assumption about baselevel learning would 
be omitted, Equation 4, which models the interference 
effect, would still create variations in p' . I tried to fit the 
data without the calculation of retrieval probabilities as a 
function of time (i.e. without baselevel learning), using a 
single value for the probability of retrieval p. This value 
was estimated as p = 0.85. The resulting values of R2 = 
0.77 and RMS = 0.08 show that the interference assump­
tion alone accounts for a fair amount of variability, but 
the prediction is clearly improved by the assumption 
about baselevel learning. 
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Figure 3: Mean proportions of correct answers from Ven­
turino (1997) and the model (DA: different attributes, 

SA: same attribute) 

Discussion 
It is remarkable that a model that combines a task 

analysis with a small set of basic assumptions about the 
dynamics of memory elements can reproduce the data so 
well. This demonstrates that there is no reason to distin­
guish between memory capacity for static information 
and memory capacity for dynamic information, as it was 
suggested by Venturino (1997). The model implies a sim­
ple rehearsal strategy in which only the most recent value 
is rehearsed about twelve times. This number is slightly 
higher than the number of rehearsals that were needed to 
encode the instruction in a model of serial attention by 
Altmann (2000). Because the present model does not 
include activation spread by cues, which would also in-

also increase the probabilities of retrieval, this number of 
rehearsals is probably overestimated. 

The simplicity of the rehearsal strategy was not as­
sumed for sake of parsimony, but is actually functional. If 
more than the most recent value would be rehearsed, this 
would strengthen older memory traces to a degree that 
new traces could hardly compete with the older ones, 
thus preventing the system from retrieving newer traces 
which are more likely to represent current values. This 
prediction of the model should be tested in future re-
search. 

Although the model is successful with standard as­
sumptions about memory, there is one feature that points 
in a similar direction as Venturino's (1997) speculation 
about different types of memory capacity. The parameter 
c in Equation 4 and its estimated value of 0.5 establish a 
threshold of two memory elements up to which no inter­
ference occurs. This raises the question if there might be 
a preferential type of representation for a very small 
number of elements. Such an assumption, implemented 
in a simulation model, would remedy the model's under-
estimation of performance in the lowest memory load 
conditions. ACT-R provides opportunities to model such 
a preferential representation, for example if one assumes 
that one or two of the most recent values are always ele­
ments of the focus of attention. 

Another interesting question that can be stated more 
precisely thanks to the model is what interferes with the 
correct answer. The present model assumes that only the 
current values that share the same attribute interfere with 
each other, resulting in no interference in the conditions 
with different attributes. The small memory load effect in 
these conditions is due to the increasing mean "age" of 
the memory representations with higher memory load. 
Also in the same-attribute conditions, the interference 
factor (Equation 4) depends on the number of current 
values. 

This assumption, although critical for the predictions 
and supported by the data, can be questioned. It might be 
more plausible to assume that not only the current values 
of an attribute compete, but all of them. Interestingly, 
this assumption predicts more interference for lower 
memory loads in the different-attribute conditions. Sup-
pose there are twelve memory elements representing the 
twelve most recent values, some of them current, some 
not. Under memory load 2, there are two different attrib­
utes, thus on average six of the elements share the same 
attribute. Under memory load 4, three elements, and un­
der memory load 6, two elements share the same attrib­
ute. Thus, the lower the memory load, the more elements 
of the same attribute compete with each other, producing 
higher interference - a pattern that is contradicted by the 
data. 

All these observations converge at the question of what 
happens with the memory elements that represent out-
dated values. The decay of baselevel activation certainly 
contributes to the diminishing interference potential of 
outdated memory elements, but the decay guarantees this 
effect only if no noise is assumed. If one assumes some 
noise, which seems to be realistic, much more interfer-



ence would be expected than predicted by the present 
model and found in the data. I have started to investigate 
this problem using a rather process oriented, symbolic 
type of modeling. It will be interesting to see if additional 
processes such as active inhibition have to be assumed to 
explain the rather low interference effects. 

Another advantage of symbolic modeling is that it de­
mands more details about cues. In the present model, it 
was implicitly assumed that only one strong cue is in 
effect. It is the attribute in the different attribute condi­
tion. In this condition, only one value of each attribute is 
a current value. This value is always the most recent -
and thus the most active value of that attribute. There-
fore, using the attribute as a constraint and retrieving the 
most active memory element delivers the correct answer. 

The reason why the attribute is assumed to be the only 
strong cue is that the relation between an attribute and its 
values is the only one that stays constant throughout the 
experiment. In their Experiment 4, Hess et al. (1999) 
established a constant relation between a spatial cue and 
attribute values in a many-objects/same-attribute condi­
tion. This cue was strong enough to abolish the interfer­
ence effect that is usually observed in that condition. 

The objects one the other hand are much less potent 
cues, because the relation between objects and attribute 
values varies. This is probably the reason why the infor­
mation organization factor (which is operationalized 
through the number of objects) exerts so little influence. 
The model even justifies to doubt if there is a real effect 
at all, because the difference between the one-object and 
many object conditions is partially explained by the dif­
ferent probability structure of the material in the one-
object/same-attribute condition. One data point that con-
tributes much to the difference is the performance in 
memory load 4 of that same condition where the model's 
predictions deviate most highly from the data. A replica­
tion would be necessary to find out if this deviation is 
rather due to noise in the data or to inappropriate as­
sumptions of the model. In such a study, the probability 
distribution of the one-object/same-attribute condition 
should be approximated to the distributions of the other 
conditions in order to draw clearer conclusions about 
information organization. 

Conclusions 
The model has demonstrated clearly that a task analy­

sis combined with a small set of assumptions about the 
dynamics of memory traces is sufficient to reproduce the 
basic results related to the keeping track paradigm. No 
distinction between memory capacities for static and for 
dynamic information is needed. The model implies that 
interference occurs between representations of current 
values. Hence, an issue of future research should be to 
investigate what happens with the representations of out-
dated values. As to the factor information organization, it 
has been shown that the effect of this factor is partially 
due to the deviating probability structure of one of the 
conditions. To clarify the influence of information or­
ganization, the probability structures should be assimi­

lated in future studies by means of the presented task 
analysis. 
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